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Abstract

A theoretical investigation of negative-ion formation from positive-

ion-surface scattering is presented from a unified point of view. Based

on the time-dependent Anderson-Newns model, the correlation energy U is

seen to play an important role in the two-electron transfer process.

Calculations of the probability of negative-ion formation are in good

agreement with experiments on the conversion of H+(D + ) to H'(D-) by

scattering from a cesiated W(100) surface.
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Charge-exchange processes arising from monoenergetic ion beams scattered

from solid surfaces have recently been the subject of much experimental 1
-5

and theoretical6-10 interest. Most of these studies focus on the process

of ion neutralization, involving the transfer of a single electron from the

surface to the singly-charged ion. I1 3'6 "10  However, owing to the increase

of applications involving the transfer of two electrons in a variety of

11,12
situations, such as plasma fusion and the generation of high-energy

neutral beams, attention has also been directed to processes of negative-
ion formation.4'5'13

For ion neutralization, the majority of theoretical work has been based

14on the Anderson-Newns model, originally proposed for the explanation of local-
ized magnetization in transition metal alloys and subsequently applied to various

other problems such as chemisorption on metals
15 and mixed valence in solids. 16'17

In these applications of this model, the correlation energy U, arising from the

Coulomb repulsion between the two electrons of opposite spin in the same discrete

level, plays a crucial role. However, in studies of ion netrualization (or the

reverse process of atom ionization), this important quantity is either implicitly

assumed to be infinite or completely ignored. Such approaches are thus

incapable of accounting for negative ion formation: U - - completely supresses

the transfer of a second electron, while if only single-electron transfer is

considered, U is irrelevant.

13Previous theoretical work on negative-ion formation has centered on

the time-dependent width and shift of the valence level of the impact ion,

where the time dependence is due to the motion of the ion. It was assumed

that first neutralization occurs via a nonresonant Auger process, while the

I m
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nuclear motion of the ion can subsequently bring the valence level into

resonance with a band state and thus effect the transfer of the second

electron. The quantity U again does not play an important role in this

theory.

In the present work, we use the Anderson-Newns model to examine the

effects of U on the two-electron transfer process in relation to the dynamics

of the nuclear motion of the impact ion. This represents the first time

that charge-exchange processes in surface scattering have been considered

from a unified point of view. We shall see that the negative-ion formation

depends crucially on the finite value of U, and in fact, recent experimental

results 5 can be explained in terms of our theory.

The time-dependent Anderson-Newns Hamiltonian including the correlation

energy term is given as

H(t) = H0 + V(t),

where

Ho t Undnd

0 = lcdcdoCdo k kck0kk + dond (2)

V(t) t kc
. -[vkd(t)c ck + Vkd(t)c d.

The indicles d and k denote the valence state of the impact ion and the

conduction band states of the solid, respectively, a is the spin index and

nd Cd+Cd. The interaction Hamiltonian, V(t), responsible for the electron

transfer between the band and valence states, is the only explicitly time-

dependent part. The motion of the projectile ion can be phenomenologically
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taken into account by using the specific form
6

Vkd(t) = Vkde- (4'

where X, the sole dynamical parameter in our model, is directly proportional

to the normal impact velocity. Hence x controls the duration of the bound-

continuum interaction, while Vkd (time-independent) determines its strength.

To lowest order, the perturbative solution for the time-evolution

operator T in the interaction picture, which contributes to the S-matrix

for negative-ion formation, is given as
t - t

i(2) = (-i) 2 f dt'V(t')f dt"V(t"), (5)

where

". V(t) = eiHOtv(t) eiHot (6)

is V(t) expressed in the interaction picture. At t = -®, the ion is taken

to be infinitely far from the surface, and t = 0 is the instant of impact.

It is apparent from Eq. (3) that, since negative-ion formation involves

ultimately the transfer of two electrons, only terms of even powers in

in the expansion of T contribute to the S-matrix.

Figure 1 illustrates schematically the electron-transfer process to

lowest, i.e., second, order as contained in Eq. (5). Physically, every

factor of V(t) corresponds to the transfer of one electron from the band

level ek to the Cd level of the ion, or the conjugate process of electron

transfer from Ed to Ek. Therefore, the contribution to the S-matrix from

4
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higher-order terms of T can be diagrammatically generated in a straight-

forward manner. Such terms (neglected in this work), however, may involve

those final states i-i which the solid becomes electronically excited, with

levels higher than the Fermi level occupied. In general, low-ordered pro-

cesses are favored by high impact velocities (large x).

To lowest order, the time-dependent probability for negative-ion

formation is then given as

C C

F F()2
P(t) = f de f dC'p(e)ci')<k IT 2(t,-w)II>l 2 , (7)

L CL

where _F and CL are the Fermi energy and conduction band edge of the solid,

respectively, P(E) is the density of states of the band, and the initial

and final states, II1 and lk k,k> respectively, are described in Fig. 1.

The matrix element in Eq. (7) can be evaluated by using Eqs. (2)-(6) to give

the result

<k k+' i(2  ) V2  1+(U-c 7c')/2 e[2x+i(U 'c-c')]t (X_ C) .IT J<~ ~ k(k C-()(T(!1_t,-+.l = -

t S 0 (8a)

1, (12~1 1

T )~l(U--c')2Xi(U-c-e')]t AI(--'/
X (-A+-r + -XAr c)e[x1 -)t

+ 2V2A. 2  [--(-cn i

+ le fe1(U1 t > 0 (8b)

+IE +€~iU_

...,..........
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wher £ 
t  

- d an 0 Eki- C wit Cdset as the zero of energy, and

V = V is assumed to be independent of energy. As a first approximation, we

have also assumed that U and Ed are constant within the collision region. This

latter assumption is not expected to affect the results qualitatively.

We now turn to calculations of the probability P(t) of negative-ion

formation and its limiting value at t - P(-o), for various choices of

the parameters U and X. PHac represents the experimental observation of

outgoing negative ions after the scattering event is complete, and P(t)

reflects the behavior of the transient states. The following fixed
2

numerical values were adopted: c L = 10 eV, c F = 0.06 eV and L = zV

0.43 eV, where we have assumed the band to have no important structure

so that the density of states p can be taken as constant in the integra-

* tion over the band in Eq. (7). Although the last two numbers have been

used previously in a study of charge transfer in the Na/W(100) system,8

they have no special significance in our present work, which is to

* investigate in general the effects of the variation of x and U, especially

the latter.

Intuitively, we expect the probability P(-~) to be small when the

repulsive correlation energy U is large. However, P(-o) also depends on

x, i.e., on the velocity of the impact ion. As shown in Fig. 2, there is

a peak for P(-) at a small value of X for each U. The explanation for this

is that since small x implies a long duration of interaction whereby from

the uncertainty principle the resonance requirement is stringent, it is

*impossible for the second electron in the solid to overcome the barrier U.

* On the other hand, large x can ease the resonance requirement -- energy

* conservation can be violated for short-duration processes -- but it also

limits the actual time available for electron transfer, resulting in a

small P(-). As a consequence, for each U there exists an optimal value of
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M for which the probability attains a maximum. Moreover, m

increases as U is increased, due to the fact that a shorter inter-

action time is favorable for the second electron to transfer non-

resonantly as U becomes larger.

The close relationship between resonant electron transfer and the

ion velocity becomes obvious when we look at the time evolution of the

probability of negative-ion formation. Figure 3 displays P(t) for various

values of U with fixed x. Each probability curve has a peak at very short

time t m (- 0.2 femtoseconds). We see that tm is smaller for larger U, in

accordance with the arguments given above. In addition, the degree of

transient negative-ion formation, measured by the ratio P(t )/P(..), is morem
pronounced for larger U. Figure 4 provides yet another manifestation of

the striking transient behavior; namely, although there is an optimal m

at each U for the limiting value of the probability, P(-), this is not

necessarily the case in the transient region.

To test our theory, we shall compare it with measurements on the

conversion of H+(D) to H (D') by scattering from a cesiated W(1O0)

surface at different grazing angles e.5  For this purpose, we identify

x as vcose, where v is the magnitude of the velocity, and phenomeno-

logically introduce a velocity-dependent interaction, a - 0.43 exp(-O.Olv)

(in the unit of eV), to account for the loss of particles due to penetra-

tion into the surface. The variation of e is thus equivalent to the

variation of the normal impact velocity x. Our results, given in

Fig. 5, are in qualitative agreement vOith the experimental ones,5

where for all incident enerC ' th .. nversion probability goes
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through a maximum. Quantitative comparisons have not been attempted since

precise information on critical parameters, especially A, is still lacking.

For the cesiated W(100) surface, among other complications leading to

unreliable data for parameters is the theoretical evidence of a lowering

of the work function by multiple dipole formation. 18 "9

In this work we have demonstrated, through varying the dynamical

conditions of the impact ion, the significance of the correlation energy U

in negative-ion formation from positive-ion-surface scattering. Though U

in general decreases the probability for rf-ative-ion formation, one can

always exploit the experimentally controllable dynamical conditions (varying

v and e) to achieve an optimal result for a given system. Moreover, there

may even be the possibility of exploiting the characteristic transient behavior

of P(t), since for finite U, P(tm ) is always larger than (-) except for very

large x. For very small x, on the other hand, our perturbation approach may

not yield correct results, since the long interaction times then allowed may

require higher-order processes than the second-order one be considered. Our

results have been shown to be in good qualitative agreement with experiments.

A more elaborate calculation is needed which takes Into account the lowering of the

valence level of the ion near the surface18'19 is needed for quantitative

Jcomparision with experiments.
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Figure Captions

Fig. 1. Schematic diagram of electron transfer in negative-ion formation.

Cis the upper and EL the lower edge of the band. (a) Initial

state LI>: valence state Ed empty, band filled up to the Fermi
level EF. (b) Intermediate states Ik + and 1k;>: states cor-

responding to the neutralized atom; one electron transferred

from the Ekor kilevel to the Cdlevel. The arrows denote

the spin states of the electrons, and the solid and hollow

circles represent electrons and holes, respectively. (c) Final

states Ik~k'>: negative-ion states; two electrons transferred

to the Ed level.

Fig. 2. PHcc vs X for various values of U. Energy is in the unit of eV.

Fig. 3. P(t) vs t for various values of U with fixed X. As U increases,

the characteristic short-time behavior becomes more pronounced.
Energy is in the unit of eV, and time is in the unit of 6.59 x

10 6sec fl)

Fig. 4. P(t) vs t for various values of X with fixed U. The units are the

same as in Fig. 3.

Fig. 5. P(-o) vs e, the incident angle of impact. v.<V v2v< V 4.

... 1 . ... ....... .
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